
Development of the complete workflow for producing and using a novel nanomodified Ti-based alloy for additive manufacturing in special applications.

Metal AM Meets Nanotechnology

The NANOTUN3D workplan follows the main blocks towards the industrialisation of the nano-modified Ti alloy applications:

Material and process Qualification

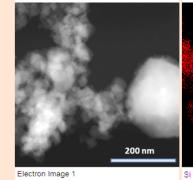
A qualification approach of the developed material and transformation processes.

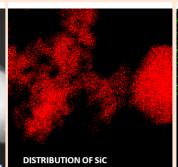
Lightweight Structural Metallic Parts

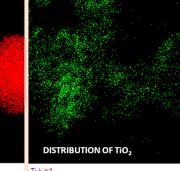
NANOTUN3D material will be an enhanced Ti6Al4V for AM with an improvement of the mechanical behaviour by 30% with no weight penalty in comparison with standard Ti6Al4V. NANOTUN3D will be ready for developing new lightweight structural parts reducing the time for qualification by 40%. NANOTUN3D will be ready for being used in a safe manner along its life cycle with near 0 risks.

Development of AM post-process

The postprocesses needed by the AM NANOTUN3D part: machining, surface and heat treatments.

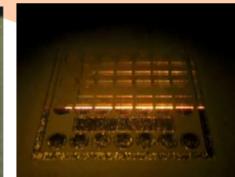



Health, Safety and **Environment friendly**


The development and Implementation of a Health and Safety Management System to ensure near 0 risks associated with the use on the NANOTUN3D technology from core-shell production to final part.

Development of coreshell nanoparticles

A "core-shell" concept and process (lab and industrial scale) for embedding ceramic nano-particles in the Ti6Al4V matrix.



Development of AM process: SLM and EBM

The specification of the manufacturability requirements (process specification, design rules, reusability strategy, etc.) for processing the nanomodified Ti6Al4V by two AM technologies: Selective Laser (SLS) and Electron Beam (EBM).

Powder for AM: SLM and EBM

The definition and scale up of two manufacturing routes for the NANOTUN3D material, based on the most popular powder production techniques: Gas atomization and EIGA.

Preliminary results:

Some results are achieved over the objectives foreseen. Five core-shell systems developed in lab and industrial scale. Two routes for manufacturing powder particles are defined (GA/EIGA). Decision made on early screening of the mixed/ consolidated samples on AM techniques (SLM/EBM). Qualification approach developed of material and process. Data on exposure and effects, together with available data from literature and physico-chemical characteristics is integrated to obtain a HSE management system.

More info at:

http://www.nanotun3d.eu/

Consortium:

Authors:

L. Portolés, M. Sánchez, J.R. Blasco, E. Martínez AIDIMME, METAL-PROCESSING, FURNITURE, WOOD AND PACKAGING TECHNOLOGY INSTITUTE

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 685952.